

POTENCIAL TERAPÊUTICO DO COMPOSTO LPSF/GQ-238 NA AVALIAÇÃO DA ATIVIDADE ESQUISTOSSOMICIDA

Isabella Nayara Santos Silva (1); Janaína Feitosa do Nascimento Monteiro (1); Mônica Borba da Silva (2); Rosali Maria Ferreira da Silva (4)

Universidade Federal de Pernambuco. Isabella.Nayaraa@gmail.com

Resumo: Segunda maior doença em importância para a saúde pública dentre as doenças negligenciadas do mundo, ficando atrás, apenas, da malária, a esquistossomose tem sido relatada em 78 países, afetando cerca de 200 milhões de pessoas. Com o objetivo de reduzir as formas graves da esquistossomose mansônica, medidas terapêuticas vêm sendo estudadas em todo mundo. Atualmente, o fármaco mais utilizado é o praziquantel um derivado pirazinoisoquinolina que se tornou o tratamento de escolha por ser eficaz, porém seu uso exclusivo tem ocasionado a base do desenvolvimento de uma possível resistência dos vermes do S. mansoni a esse fármaco. Vários derivados heterocíclicos pentagonais tiazolidínicos vem sendo sintetizados e avaliados frente a diversas possibilidades de atividades biológicas, e em cima disto este trabalho analisa o 3-(2,6-difluor-benzil)-5-(indol-3ilmetileno)- tiazolidina-2,4-diona (LPSF/GQ-238) através de testes físico-químicos e análises térmicas para averiguar uma possível atividade esquistossomicida.

Palavras-chave: Derivados indólicos-tiazolidínicos, esquistossomose, praziquantel.

INTRODUÇÃO

Segunda maior doença em importância para a saúde pública dentre as doenças negligenciadas do mundo, ficando atrás, apenas, da malária, a esquistossomose tem sido relatada em 78 países, afetando cerca de 200 milhões de pessoas, estimando-se ainda em 700 milhões o número de pessoas que vivem em áreas passíveis de contrair a parasitose. Dentre as espécies infectantes dos seres humanos, *Schistosoma mansoni* destacase por ser um dos agentes etiológicos mais prevalentes nas regiões tropicais e

subtropicais, sendo distribuído por cerca de 50 países com uma estimativa de infecção de mais de 83 milhões de pessoas no mundo inteiro.

Com o objetivo de reduzir as formas graves da esquistossomose mansônica, medidas terapêuticas vêm sendo estudadas em todo mundo. No Brasil, tem-se utilizado a quimioterapia com o intuito de diminuir a morbidade, prevalência e incidência da esquistossomose mansônica nas áreas endêmicas. Atualmente, o fármaco mais utilizado é o praziquantel (PZQ), (2-ciclohexilcarbonil-1,2,3,6,7,11b-hexahidro-

4*H*-pirazino[2,1-a]isoquinolina-4-ona), um derivado pirazinoisoquinolina que se tornou o tratamento de escolha por ser eficaz contra todas as espécies de *Schistosoma*, ao mesmo tempo em que possui um menor custo e toxicidade em comparação aos outros compostos esquistossomicidas anteriormente utilizados.

O uso exclusivo do PZQ no tratamento esquistossomose mansônica da tem ocasionado a base do desenvolvimento de uma possível resistência dos vermes de S. mansoni a esse fármaco. Devido a essa problemática, há a necessidade do surgimento de novos agentes esquistossomicidas que possam ser utilizados como alternativa para o tratamento desta parasitose. Vários derivados heterocíclicos pentagonais tiazolidínicos vem sendo sintetizados e avaliados frente a possibilidades diversas de atividades biológicas, como o 3-(2,6-difluor-benzil)-5-(indol-3ilmetileno)-tiazolidina-2,4-diona (LPSF/GQ-238) que apresenta importante atividade esquistossomicida em estudos in vitro. Esse fármaco teve sua estrutura química idealizada a partir do nirdazol, fármaco que já fez da quimioterapia parte da esquistossomose. Esse trabalho sintetizar, elucidar e avaliar o LPSF/GQ-238 possível candidato como fármaco esquistossomicida a partir da realização de

testes físico-químicos e análise térmica do composto.

METODOLOGIA

Síntese do 3-(2,6-diflúor-benzil)-5-(5-bromo-1*H*-indol-3-ilmetileno)-tiazolidina-2,4-diona (LPSF/GQ-238)

Material

Foram utilizados os seguintes reagentes e solventes para obtenção dos compostos: aldeído aromático substituído (5-bromo-indol 3-carboxaldeído). haleto de benzila substituído (cloreto de 2,6-diflúor-benzil), tiouréia (Sigma-Aldrich®), ácido cloroacético (Sigma-Aldrich®), acetato de etila (ACROS[®]), etanol absoluto (MERCK[®]), hidróxido de sódio (VETEC®), hexano (QUIMIS®).

PRIMEIRA ETAPA: Síntese da Tiazolidina

Esquema 1.Síntese da tiazolidina-2-4-diona (LIMA, 1998).

Em um balão de fundo redondo com capacidade de 250 mL, foram adicionados 40 g de tiouréia previamente solubilizados em 200 mL de água destilada pré-aquecida. Neste

mesmo balão, foram adicionados 49,55 g de ácido cloroacético previamente solubilizados em 200 mL de água destilada pré-aquecida. A reação foi submetida à agitação e refluxo por um período de 40 horas, a uma temperatura constante de 80°C. Ao final da reação, em temperatura ambiente, pôde-se observar a precipitação espontânea de cristais.

SEGUNDA ETAPA: Síntese do intermediário 3-(2,6-diflúor-benzil)-tiazolidina-2,4-diona (LPSF/GQ175)

Figura 1.3-(2,6-diflúor-benzil)-tiazolidina-2,4-diona (LPSF/GQ-175)

Em um balão de fundo redondo, com capacidade de 250 mL, foram adicionados 5 g (0,04273 mol) de tiazolidina-2,4-diona e 1,7094 g (0,04273 mol) de hidróxido de sódio previamente solubilizado em uma mistura etanol/água 6:4 (10 mL) e deixado sob agitação por 15 minutos à temperatura ambiente. Ao sal de sódio de tiazolidina-2,4-diona formado, adicionaram-se, quantidades equimolares do cloreto de 2,6-diflúor-benzil. A reação foi mantida em refluxo por 42 horas à temperatura entre 60 e 70°C. Ao final da

reação, o produto esperado precipitou espontaneamente à medida que foi retornando à temperatura ambiente.

TERCEIRA ETAPA: Síntese do 3-(2,6-diflúor-benzil)-5-(5-bromo-1*H*-indol-3-ilmetileno)-tiazolidina-2,4-diona (LPSF/GQ-238)

Figura 2.3-(2,6-diflúor-benzil)-5-(5-bromo-1*H*-indol-3-ilmetileno)-tiazolidina-2,4-diona (LPSF/GQ-238)

Em um balão de fundo redondo, com capacidade de 250 mL, foram adicionados 5,2833 g (0,02172 mol) de LPSF/GQ175 e 4,8669 g (0,02172 mol) de 5-bromo-indol-3-carboxaldeído em 100 mL de etanol e 3mL do catalisador (2-hidroxietilamonilformato). Deixou-se sob agitação por 40 minutos à temperatura ambiente. Após esse período, o composto precipitou espontaneamente.

Caracterização físico-química

-Solubilidade

Foram pesados 5mg do LPSF/GQ238e adicionados os solventes em partes iguais ao composto, a fim de perfazer todas as

quantidades parte (soluto)/parte(solvente) do teste de solubilidade farmacopeico. Os solventes foram escolhidos de acordo com seu grau de polaridade. Para o teste foram utilizados água destilada, etanol P.A 99,5% (Neon®), metanol P.A (QEEL®), Acetonitrila P.A (Vetec®), Acetato de Etila P.A (Tedia®), éter etílico P.A (Vetec®) e Hexano P.A (Cinética®). Todos os testes foram realizados a uma temperatura de 25°C.

Tabela 1 - Classificação de solubilidade segundo a Farmacopeia Brasileira, 2010.

SOLVENTE	TERMO DESCRITO
Muito solúvel	Menos de 1 parte
Facilmente solúvel	De 1 a 10 partes
Solúvel	De 10 a 30 partes
Ligeiramente	De 30 a 100
solúvel	partes
Pouco solúvel	De 100 a 1.000
	partes
Muito pouco	De 1.000 a
solúvel	10.000 partes
Praticamente	Mais de 10.000
insolúvel/Insolúvel	partes

-Microscopia eletrônica de varredura

O microscópio eletrônico de varredura (MEV) utiliza um feixe de elétrons no lugar de fótons utilizados em um microscópio óptico convencional, o que permite solucionar o problema de resolução relacionado com a

fonte de luz branca e possibilita a visualização de partículas invisíveis a olho nu englobando valores que vão de 2 a 5 nanômetros. Permitem aumentos de 300.000 vezes ou mais, para a maior parte de materiais sólidos, conservando a profundidade de campo compatível com a observação de superfícies rugosas, e a observação e análise de características microestruturais de objetos sólidos.

Análise térmica

- Calorimetria Exploratória Diferencial (DSC)

As curvas calorimétricas foram obtidas em um calorímetro de varredura diferencial (Shimadzu[®], modelo DSC-50) usando um cadinho hermeticamente fechado de alumínio. O equipamento foi calibrado utilizando índio (156,6 ± 0,3° C) como padrão. O sinal de fluxo de calor foi calibrado pelo calor de fusão do índio (28,59 ± 0,3 J/g). Os experimentos foram conduzidos com elevação da temperatura no intervalo de 25-450°C nas razões de aquecimento de 2, 5, 10, 20 e 40°C/min, em fluxo de nitrogênio de 50 mL/min. A massa da amostra foi de 2,0 ± 0,1 mg. Os dados DSC foram analisados usando o Software Tasys[®] da Shimadzu[®].

-DSC acoplado a sistema fotovisual (DSC-Fotovisual)

dados **DSC-Fotovisual** foram obtidos em um calorímetro diferencial de varredura (Shimadzu[®], modelo DSC-50) acoplado a um sistema fotovisual, equipado com um microscópio (Olympus®, modelo SZ-CTV60) e uma câmera (Sony[®], modelo VCC-520). As amostras foram colocadas em um cadinho aberto de alumínio e aquecidas no intervalo de temperatura de 25-400°C com taxa de aquecimento de 2°C/min, nas mesmas condições de fluxo de azoto do DSC convencional. As fotos foram capturadas com o Software Asymetrix DVP 4,0 em tempo real para observar as transições de fase nas amostras.

-Termogravimetria (TG)

As curvas termogravimétricas dinâmicas obtidas foram em termobalança (Shimadzu[®], modelo TGA-50) utilizando cadinho de alumina. O aparelho foi calibrado oxalato de cálcio com monohidratado. Os experimentos foram conduzidos no intervalo de temperatura de 25-900°C nas razões de aquecimento de 10, 20 e 40°C/min em ar sintético e nitrogênio com fluxo de 20 e 50 mL/min. respectivamente. A massa da amostra foi de 2.0 ± 0.1 mg. As curvas TG isotérmicas foram obtidas no mesmo equipamento sob as mesmas condições de atmosfera e de massa das curvas TG dinâmicas.

As temperaturas utilizadas para os estudos isotérmicos foram: 255, 265, 275, 285 e 295°C. Os dados da TG dinâmica foram analisados usando o Software Tasys da Shimadzu[®]. A ordem de reação (n) e energia de ativação (Ea) foram determinadas utilizando o modelo de Ozawa para os dados de TG dinâmica em atmosfera de ar sintético e nitrogênio. Os parâmetros cinéticos de decomposição foram calculados utilizando a equação de Arrhenius com base nos dados de TG isotérmica.

Estudo de compatibilidade fármacopolímero

Para o estudo da compatibilidade do fármaco, foi analisado o comportamento do mesmo frente diferentes polímeros. Para isto foram realizadas misturas físicas na proporção 1:1, utilizando os seguintes polímeros, Soluplus, Polietilenoglicol ePolivinilpirrolidina (PVP-K30).

-DSC

Os dados DSC-Fotovisual foram obtidos em um calorímetro diferencial de varredura (Shimadzu[®], modelo DSC-50). As amostras foram colocadas em um cadinho aberto de alumínio e aquecidas no intervalo de temperatura de 0-500°C com taxa de aquecimento de 2°C/min, nas mesmas condições de fluxo de azoto do DSC

convencional. Para esta análise, foram utilizadas 6,0 mg da mistura física, sendo 3,0 g do fármaco e 3,0 do polímero.

-TG

As termogravimétricas curvas dinâmicas obtidas foram em termobalança (Shimadzu[®], modelo TGA-50) utilizando cadinho de alumina. O aparelho foi calibrado com oxalato de cálcio monohidratado. Os experimentos foram conduzidos no intervalo de temperatura de 0-600°C na razão de aquecimento de 10°C/min em ar sintético e nitrogênio com fluxo de 20 e 50 mL/min, respectivamente. A massa da amostra foi de 2.0 ± 0.1 mg. As curvas TG isotérmicas foram obtidas no equipamento sob as mesmas condições de atmosfera e de massa das curvas TG dinâmicas.

RESULTADOS E DISCUSSÃO

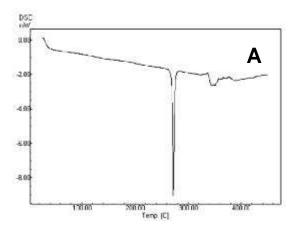
-Solubilidade

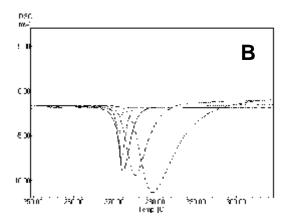
De acordo com os testes realizados, segundo a Farmacopeia brasileira, o composto apresentou os seguintes resultados, descritos na Tabela 2.

Tabela 2 - Solubilidade do LPSF/GQ-238 frente diferentes solventes.

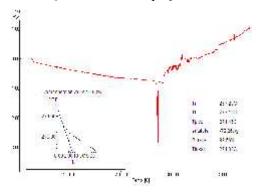
SOLVENTE	TERMO DESCRITO
Água	Praticamente insolúvel ou
destilada	insolúvel
Etanol	Muito pouco solúvel
Metanol	Muito pouco solúvel
Acetonitrila	Pouco solúvel
Acetato de	Pouco solúvel
etila	
Éter etílico	Muito pouco solúvel
Hexano	Praticamente insolúvel ou
	insolúvel

-Microscopia eletrônica de varredura


Através das imagens obtidas por meio da MEV, foi possível constatar que o composto LPSF/GQ-238 possui forma cristalina, apresentando cristais irregulares em forma de agulha, semelhante aos compostos de mesma classe utilizados para a mesma finalidade, a atividade esquistossomicida. (Figura 3).


Figura 3. Forma de cristais do composto LPSF/GQ-238, constatada através da MEV.

A análise da curva de DSC do LSPF/GQ-238 mostrada na Figura 4A, na razão de aquecimento de 10° C/min mostra um pico endotérmico na faixa de $272,48 \pm 0,28^{\circ}$ C com entalpia de $78,31 \pm 4,31$ J/g, referente à fusão do composto.



A partir da análise das curvas DSC do LSPF/GQ-238, nas razões de aquecimento 2, 5, 10, 20 e 40°C/min (Figura 4B), observouse picos endotérmicos na faixa de temperatura de 266-300°C, correspondentes ao processo de fusão da molécula.

A pureza do LPSF/GQ-238 foi calculada através da aplicação da equação de

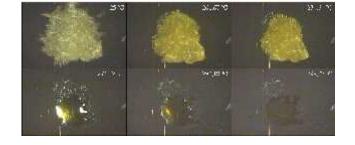

Van'tHoff. Para uma boa correlação da pureza obtida por DSC é necessário que a amostra tenha pureza superior a 98%. A pureza do LPSF/GQ-238 foi de 99,52 ± 0,03 % (Figura 5), sendo então considerado um bom resultado.

Figura 5. Determinação da pureza do composto LPSF/GQ-238 através da equação de Van'tHoff.

A Figura 6 mostra as fotos obtidas através do DSC fotovisual na razão de aquecimento de 2°C/min. As faixas de temperatura de fusão no DSC convencional de acordo estão aos eventos **DSC** visualizados no fotovisual. Foi mudança de observado coloração LPSF/GQ 238 à medida que houve aumento da temperatura.

Figura 6. DSC fotovisual do LPSF/GQ 238 na razão de aquecimento de 2°C/min.

(83) 3322.3222 contato@conbracis.com.br www.conbracis.com.br

-Termogravimetria

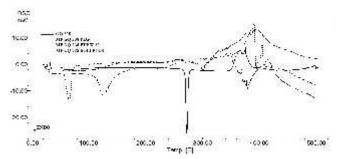
A Figura 7 mostra as curvas termogravimétricas dinâmicas do LPSF/GQ-238, nas razões de aquecimento de 10, 20 e 40°C/min e a curva de DSC na razão de aquecimento de 10°C/min.

Figura 7. Curva termogravimétrica dinâmicas do LPSF/GQ-238 nas razões de aquecimento de 10, 20 e 40° C/min e DSC na razão de aquecimento de 10° C/min.

Estudo de compatibilidade Fármaco-Polímero

-DSC

As análises das curvas de DSC, das misturas físicas e do composto isolado mostram que, a mistura do LPSF/GQ-238 com PEG apresentou um pico endotérmico na faixa de temperatura de 56,41-66,17°C, representando a fusão do composto. A confirmação que esse pico é indicativo da fusão, e não de perda de moléculas de água é explícita através da curva do TG da mistura física, onde não ocorreu nenhuma curva


endotérmica nesse intervalo de temperatura, o que caracterizaria perda de massa.

A mistura física do LPSF/GQ-238 com PVP K-30 apresentou dois picos endotérmicos na curva. O primeiro, na faixa de temperatura de 40-67°C indica a perda de moléculas de água, sendo este resultado confirmado na curva do TG da mistura física. O segundo pico ocorreu entre 115,44-125,73°C, e representa a fusão do composto.

A mistura física do LPSF/GQ-238 com Soluplus não apresentou nenhum evento no DSC, podendo caracterizar uma possível incompatibilidade do fármaco com o polímero.

A tabela 4 mostra, respectivamente, as temperaturas de início da fusão, fim da fusão, temperatura do pico da curva da fusão e a variação da entalpia de cada uma das misturas físicas e do composto isolado.

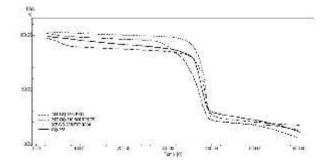
Figura 8. Curvas da calorimetria exploratória diferencial do LPSF/GQ238 e de suas misturas físicas.

-TG

De acordo com as curvas obtidas através das análises de termogravimetria,

(83) 3322.3222 contato@conbracis.com.br www.conbracis.com.br

a mistura física do LPSF/GQ-238 com PEG apresentou uma diminuição na variação da entalpia e uma antecipação de 10°C na degradação do composto, em relação ao produto isolado. No evento de degradação houve uma perda de massa de 75%. Essa antecipação não é considerada uma incompatibilidade entre o fármaco e o polímero, mas indica que o polímero não foi capaz de proteger termicamente o fármaco.


Em relação à mistura física do LPSF/GQ-238 com PVP K-30, houve dois eventos de degradação. O primeiro, na faixa de temperatura de 40-67°C, representa a perda de moléculas de água, totalizando uma perda de massa de 6%. No segundo evento de degradação, na temperatura de 354,65°C ocorreu uma perda de massa de 57% referente à fusão do composto.

A mistura física do LPSF/GQ-238 com Soluplus também apresentou dois eventos de degradação referentes à fusão do fármaco. O primeiro ocorreu na temperatura de 294,72 °C onde houve uma perda de massa de 10%. O segundo evento de degradação ocorreu na temperatura de 334,53°C e houve uma perda de massa de 58%.

A partir das curvas obtidas e dos valores mostrados na tabela 5, pode-se

perceber que dentre os polímeros testados o PEG foi o que melhor se associou ao fármaco LPSF/GQ238.

Figura 9. Curvas de termogravimetria do LPSF/GQ238 e das suas misturas físicas.

CONCLUSÃO

Α atividade esquistossomicida demonstrada por derivados tiazolidínicos impulsiona a busca por novas drogas que apresentem maior seletividade mansoni. Por meio do emprego de uma metodologia simples, foi sintetizado composto LPSF/GQ238 como sólido cristalino, com bom grau de pureza e comportamento físico-químico e térmico semelhante aos demais derivados indólicostiazolidínico testados com mesma finalidade, a atividade esquistossomicida.

A baixa solubilidade aquosa é o fator que mais o diferencia dos demais compostos, já que esta dificulta sua absorção e reprodutibilidade em ensaios farmacológicos. Dentre os polímeros estudados, o PEG foi o

que apresentou melhores resultados quando associado ao composto. Mais testes de compatibilidade e estabilidade deverão ser feitos e os ensaios farmacológicos realizados a fim de analisar com maior especificidade a possível atividade esquistossomicida do LPSF/GQ-238 assim como definir a melhor forma farmacêutica de veicular o composto.

AGRADECIMENTOS

Meus mais sinceros agradecimentos à Universidade Federal de Pernambuco, ao Laboratório de Tecnologia de Medicamentos, à FACEPE, à minha orientadora Rosali Ferreira e aos demais colaboradores deste trabalho.

REFERENCIAS

ALVES, L. D. S. Desenvolvimento de dispersões sólidas binárias visando o incremento da solubilidade aquosa do antirretroviral efavirenz. 2010. 131 f. Dissertação. (Mestrado em Inovação Terapêutica) – Universidade Federal de Pernambuco. Centro de Ciências Biológicas, 2010.

ALVES, R. Estudo termoanalítico e de compatibilidade fármaco-excipiente de rifampicina e alguns medicamentos utilizados na terapêutica da tuberculose. 2007. 90 f. Dissertação. (Mestrado em Ciências Farmacêuticas) – Universidade Federal de São Paulo. Departamento de farmácia, 2007.

BRASIL. Ministério da Saúde: Relatório de Situação – Pernambuco. Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância Epidemiológica, 3ª edição, Brasília – DF. Ministério da Saúde, 2007.

Farmacopeia Brasileira, volume 1. 5ª Ed. Brasilia, 2010b.

MEDEIROS, G. C. R. Determinação espectrofotométrica do pKa e desenvolvimento de dispersões sólidas da nova entidade química LPSF/FZ4: um promissor agente esquistossomicida. 2013. 140 f. Dissertação. (Mestrado em Inovação Terapêutica) – Universidade Federal de Pernambuco. Centro de Ciências Biológicas, 2013.

NETO, H. S.; NOVAK, Cs.; MATOS, J. R. Thermal analysis and compatibility studies of prednicarbate with excipients used in semi solid pharmaceutical form. **Journal of Thermal Analysis and Calorimetry**, n. 97, p. 367–374, 2009.

(83) 3322.3222 contato@conbracis.com.br www.conbracis.com.br

OLIVEIRA, G. G. G.; FERRAZ, H. G.; MATOS, J. S. R. Thermoanalytical study of glibenclamide and excipientes. **Journal of Thermal Analysis and Calorimetry**, v. 79, p. 267–270, 2005.

OLIVEIRA, J. F. **Síntese e avaliação da atividade esquistossomicida de novos derivados indólicos-tiazolidínicos-3,5-dissubstituídos.** 2013. 104 f. Dissertação – Mestrado em Ciências Farmacêuticas. Universidade Federal de Pernambuco, 2013.